Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://rep.btsau.edu.ua/handle/BNAU/1329
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorНіщеменко, Микола Прокопович-
dc.contributor.authorNischemenko, Nicola-
dc.contributor.authorНищеменко, Николай Прокопович-
dc.contributor.authorСтовбецька, Людмила Степанівна-
dc.contributor.authorStovbetska, Luydmila-
dc.contributor.authorСтовбецкая, Людмила Степановна-
dc.contributor.authorПорошинська, Оксана Андріївна-
dc.contributor.authorPoroshinska, Oksana-
dc.contributor.authorПорошинская, Оксана Андреевна-
dc.contributor.authorШмаюн, Сергій Степанович-
dc.contributor.authorShmayun, Sergiy-
dc.contributor.authorШмаюн, Сергей Степанович-
dc.date.accessioned2018-10-12T10:17:50Z-
dc.date.available2018-10-12T10:17:50Z-
dc.date.issued2015-
dc.identifier.citationАктивність супероксиддисмутази та каталази тканини яєчників перепілок за впливу комплексу незамінних амінокислот в поєднанні з вітаміном Е / М.П. Ніщеменко, Л.С. Стовбецька, О.А. Порошинська, С.С. Шмаюн // Наук. вісник вет. медицини: зб-к наук. праць. - Біла Церква: БНАУ, 2015. - Вип. 2(122). - С. 113-117.uk_UA
dc.identifier.issn2310-4902-
dc.identifier.urihttp://rep.btsau.edu.ua/handle/BNAU/1329-
dc.descriptionIntramolecular oxidation of biological substrates (biological oxidation) is the main molecular mechanism by which energy needs are provided with the functioning of living organisms. The intensity of lipid peroxidation is conditioned by free radical chemicals that occur as a result of metabolism. Intensification of lipid peroxidation contribute to reducing the intracellular content of antioxidants such as tocopherol, retinol, glutathione, selenium and other. By enzyme systems of biological membranes from damage due to lipid peroxidation include enzymes catalase and superoxide dismutase. Superoxide dismutase is an enzyme that protects the body from toxic products that are constantly generated during metabolism. Under the influence of this enzyme superoxide radicals are converted to less active oxidants – hydrogen peroxide and oxygen.The role of catalase is to prevent the accumulation of hydrogen peroxide, which is formed by dismutation of superoxide anion in anaerobic oxidation flavoproteyidiv restored. As a result of such reactions produced water and molecular oxygen, which are used for further physiological needs of the body. One of the natural antioxidants are vitamin E, its deficiency in the diets of animals leads to changes in ultrastructure of cell membranes and enhance the destructive effects of free radicals on cell membranes and organelles. Methionine is precursor all sulfur compounds in the body and a source of sulfur in detoxification processes. Methionine (methyl groups) can participate in the synthesis of polyamines (propylamine), which play an important role in the antioxidant protection of tissues. In addition, it was found that methionine can be used to build other sulfur-containing amino acids – cysteine, which is also part of glutathione. Glutathione is actively involved in redox processes, protecting SH-groups of enzymes and other proteins from oxidation, restoring H2O2 and ensuring transport of amino acids across the membrane of cells. According to with cysteine also can form other biologically active substances, such as acetylcysteine, which has antioxidant, anti-toxic and immune-modulating properties. Prior to the experiment superoxidedismutase activity in ovarian tissue of quails all groups was within 28,3–31,6 mind. units./mg. On the 15th day of the experiment the tendency to increase the activity of this enzyme in the experimental groups. In particular, in group 2, the growth was 14,8 % and in the 3rd, activity was greater than in the control to 10,4 %, while in the 4th group of the enzyme activity remained unchanged. On the 30th day of research activity superoxidedismutase of in the 2nd and 3rd group was significantly higher compared with control 20,3 and 14,4 %, respectively, and in group 4 activity increase was only 8,0 % compared with the control, that it was not likely. On the 45th day of the experiment likely increase in SOD activity was observed in all experimental groups and accounted for 12,1, 10,1 and 14,2 %. If we trace the dynamics of changes in superoxidedismutase activity in the ovaries poultry 2nd and 3rd group, growth observed during the experiment, which in our opinion could indicate a decrease in the concentration of H2O2 and lipid peroxidation products in these organs. Investigational enzyme activity gradually increased with increasing intensity oviposition. We can assume that the increased activity of SOD is a reflex response to the formation of lipid peroxidation products gain since the beginning of oviposition to maximize it. Enrichment of dietary quail study groups during the experiment vitamin E causes modulation of antioxidant enzymes and led to the activation lipid peroxidation , as evidenced by the growth of this indicator especially in poultry in 2nd and 3rd group compared with the control. The highest growth among the research groups of birds were in group 2, which shows in our opinion, the strengthening of lipid peroxidation during oviposition, which was the largest in the group, as well as a good supply of vitamin E diet of quail. There are anecdotal reports that bird resistance lipid peroxidation accompanied by decreased activity, however, in our experiment found that during the experiment superoxidedismutase activity increased gradually as quails in research and in the control group. The only difference is that in bird research groups who received dietary supplements essential amino acids and vitamin E, growth was more significant. Thus, the addition to the diet of a certain amount of vitamin E contributes superoxidedismutase activity compared to control during the whole period of research. You can suggest that vitamin E interacting with residual oxygen neutralizes it, thereby increasing the body's defense against lipid peroxidation products. catalase activity to some extent related to the activity of superoxidedismutase and during ontogenetic development of animals. The experiment catalase activity in ovarian tissue quails all groups ranged from 10.88 to 12.30 mmol/min×mg. Since the beginning of oviposition, the 15th day, significantly increased catalase activity of quail in the control group by 11.8 %, while the experimental groups on average 14,6–28,6 %. On the 30th day of the experiment, the activity of catalase in the second group was significantly higher compared to the control group to 26,3 % in the 3-th and 4-th group it grew by 18,8–11,5 %, that is increased activity was not likely. On the 45th day of the experiment catalase activity in the second and third experimental groups significantly increased to 23,74±1,22-22,14±1,33 mmol/min×mg or was greater than the control at 31,9–23,0 % respectively. In the fourth group of catalase activity was 21,18±1,99 mmol/min×mg and was higher compared with the control 17,7 %, but this increase was not likely. Analyzing changes in ovarian tissue catalase activity during the experiment should note its growth in all groups of birds. In our view, these changes reflect the catalase activity increased metabolism in the body hens, which explains the beginning of oviposition. Such changes catalase activity is adaptive reaction laying hens to increase the intensity of metabolic processes that ensure strengthening oogenesis in quails, and increased flow of nutrients to the ovaries quails. With the emergence of puberty and the start of oviposition investigational enzyme activity in all groups of quails grew gradually, and dietary supplements quails amino acids and vitamin E had a positive impact on the activity of catalase and course lipid peroxidation. The diet complex essential amino acids combined with vitamin E contributed to the significant increase of superoxide dismutase and catalase activity in ovarian tissue quails of experimental group compared with the control. Changes enzyme activity reflects activation of metabolism in hens research groups and enhancing lipid peroxidation associated with the start of oviposition.uk_UA
dc.description.abstractВисвітлено дані щодо впливу лізину, метіоніну і треоніну в поєднанні з вітаміном Е на ферментативну активність тканини яєчників перепілок. У ході дослідження було встановлено, що збільшення Е-вітамінної забезпеченості перепілок викликає зміни в активності антиоксидантних ферментів. Зокрема, відмічено зростання активності супероксиддисмутази у тканині яєчників перепілок дослідних груп на 14,2 %, порівняно з контролем, каталази − на 23,0– 31,9 %. Це підтверджує позитивний вплив застосованої дози вітаміну Е в поєднанні з лізином, метіоніном, треоніном на систему антиоксидантного захисту в напружений період яйцекладки. Крім того, аналізуючи зміни активності супероксиддисмутази та каталази тканини яєчників у всіх групах птиці за час експерименту відмічено їх зростання, що пов’язано з посиленням обміну речовин в організмі несучок під час яйцекладки. Приведены данные о влиянии лизина, метионина и треонина в сочетании с витамином Е на ферментативную активность ткани яичников перепелок. В ходе исследования было установлено, что увеличение Е-витаминной обеспеченности перепелов вызывает изменения в активности антиоксидантных ферментов. В частности, отмечено возростание активности супероксиддисмутазы в ткани яичников перепелок подопытных групп на 14,2 % по сравнению с контролем, а каталазы − на 23,0-31,9 %. Это подтверждает положительное влияние витамина Е в сочетании с лизином, метионином, треонином на систему антиоксидантной защиты в напряженный период яйцекладки. Анализируя изменения активности супероксиддисмутазы и каталазы ткани яичников за время эксперимента, следует отметить ее возростание во всех группах птицы, что связано с усилением обмена веществ в организме несушек во время яйцекладки.uk_UA
dc.language.isoukuk_UA
dc.publisherБНАУuk_UA
dc.subjectперепелиuk_UA
dc.subjectлізинuk_UA
dc.subjectметіонінuk_UA
dc.subjectтреонінuk_UA
dc.subjectвітамін Еuk_UA
dc.subjectантиоксидантний захистuk_UA
dc.subjectсупероксиддисмутазаuk_UA
dc.subjectкаталазаuk_UA
dc.subjectперепелаuk_UA
dc.subjectлизинuk_UA
dc.subjectметионинuk_UA
dc.subjectтреонинuk_UA
dc.subjectвитамин Еuk_UA
dc.subjectантиоксидантная защитаuk_UA
dc.subjectсупероксиддисмутазаuk_UA
dc.subjectкаталазаuk_UA
dc.subjectquailuk_UA
dc.subjectlysineuk_UA
dc.subjectmethionineuk_UA
dc.subjectthreonineuk_UA
dc.subjectvitamin Euk_UA
dc.subjectantioxidant protectionuk_UA
dc.subjectsuperoxide dismutaseuk_UA
dc.subjectcatalaseuk_UA
dc.titleАктивність супероксиддисмутази та каталази тканини яєчників перепілок за впливу комплексу незамінних амінокислот в поєднанні з вітаміном Еuk_UA
dc.title.alternativeQuail ovarian tissue Superoxide dismutase and catalase under the influence of a complex of essential amino acids in combination with vitamin Euk_UA
dc.title.alternativeАктивность супероксиддисмутазы и каталазы ткани яичников перепелок под влиянием комплекса незаменимых аминокислот в сочетании с витамином Еuk_UA
dc.typeСтаттяuk_UA
dc.identifier.udc636.6.087.74:612.3uk_UA
Розташовується у зібраннях:Наукові публікації

Файли цього матеріалу:
Файл Опис РозмірФормат 
aktyvnist'_superoksyddysmutazy _ta_katalazy_tkanyny_jajechnykiv_perepilok.pdf208,83 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.