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In recent decades, the attention of scientists has been drawn towards nanoparticles (NPs) of metals and metalloids. Traditional 
methods for the manufacturing of NPs are now being extensively studied. However, disadvantages such as the use of toxic agents 
and high energy consumption associated with chemical and physical processes impede their continued use in various fields. In this 
article, we analyse the relevance of the use of living systems and their components for the development of "green" synthesis of nano-
objects with exceptional properties and a wide range of applications. The use of nano-biotechnological methods for the synthesis of 
nanoparticles has the potential of large-scale application and high commercial potential. Bacteria are an extremely convenient target 
for green nanoparticle synthesis due to their variety and ability to adapt to different environmental conditions. Synthesis of nanopar-
ticles by microorganisms can occur both intracellularly and extracellularly. It is known that individual bacteria are able to bind and 
concentrate dissolved metal ions and metalloids, thereby detoxifying their environment. There are various bacteria cellular compo-
nents such as enzymes, proteins, peptides, pigments, which are involved in the formation of nanoparticles. Bio-intensive manufactur-
ing of NPs is environmentally friendly and inexpensive and requires low energy consumption. Some biosynthetic NPs are used as 
heterogeneous catalysts for environmental restoration, exhibiting higher catalytic efficiency due to their stability and increased bio-
compatibility. Bacteria used as nanofactories can provide a new approach to the removal of metal or metalloid ions and the production of 
materials with unique properties. Although a wide range of NPs have been biosynthetic and their synthetic mechanisms have been pro-
posed, some of these mechanisms are not known in detail. This review focuses on the synthesis and catalytic applications of NPs obtained 
using bacteria. Known mechanisms of bioreduction and prospects for the development of NPs for catalytic applications are discussed.  

Keywords: nanoparticles; bacteria; methods of "green" synthesis; application of nanoparticles.  

Introduction  
 

The current stage of science development over the last 20 years has 
been characterized by comprehensive miniaturization of technological 
processes in chemistry, biology, medicine and agriculture, which contribu-
tes to the formation of a fundamentally new direction as nanotechnology. 
The term "nano" is derived from the Greek word "nanos" what means 
dwarf and denotes measurements of one billionth of a meter (10–9) (Na-
rayanan & Sakthivel, 2010; Thakkar et al., 2010). The nanoparticle is a 
particle of a substance of arbitrary shape with sizes from 1 to 100 nm. In 
nanotechnology, a particle is called a small object that behaves as a single 
body with respect to its transport and physical properties (Thakkar et al., 
2010). Their most important feature is the ratio of surface area to volume 
size, which allows them to more easily interact with other particles (Na-
rayanan & Sakthivel, 2010; Thakkar et al., 2010). For comparison, DNA 
strands have a diameter of 2.5 nm (Lyubchenko & Shlyakhtenko, 1997), a 
typical virus of about 100 nm (Walkey, 2018), and a bacterium of about 
1–3 μm wide (Katz et al., 2003). Occupying the intermediate position 
between individual atoms and molecules, nanoparticles exhibit fundamen-
tally different physical and chemical properties compared to the macro-
cosm (Temerk et al., 2016; Wang et al., 2018a; Titus et al., 2019).  

Today, worldwide production of MtNPs is estimated at $ 13.7 bil-
lion, expected to reach $ 20 billion by 2026 (Ovais et al., 2018a).  
 
Characterization of nanoparticles  
 

Numerous catalytically active nanomaterials of various origin are 
currently being created in the world (Cormode et al., 2018; Titus et al., 

2019), which include nanomaterials with enzyme-mimetic properties, as a 
potential alternative to natural enzymes and for use in immunoassay, 
biosensor, oncotherapy, pharmacy, food industry, ecology, etc. (Chen 
et al., 2012, 2014; Fu, 2014; Lu et al., 2015; Li & Zhang, 2016; Tsekh-
mistrenko et al., 2018; Mu et al., 2019). Nanomaterial-based mimetics, 
compared to naturally occurring enzymes, have stability under harsh 
conditions, are capable of altering catalytic activity, and their production 
is relatively uncomplicated and economically justified, making them of 
great importance in practical applications (Wei & Wang, 2013; Lin 
et al., 2014). The cyclicity of nanoparticles and their ability to recover 
without significant loss in subsequent cycles of catalytic activity make 
them unique compounds (Wei & Wang, 2013). In addition, the surface 
of nanomaterials, unlike natural enzymes, which have only one active 
site in a molecule, may have more catalytic centers (Liu et al., 2015; 
Gao et al., 2017). Nanoparticles that can be used in biology and medi-
cine should have low toxicity, or complete absence of toxicity, high bio-
compatibility, ability to biodegrade or be excreted naturally (Kozik 
et al., 2016; Bityutskyy et al., 2017; Chekman et al., 2017; Ovais et al., 
2018b; Stoller et al., 2018; Yadi et al., 2018; Bityutskyy et al., 2019).  

The significant adsorption activity of the nanoparticles, due to their 
increased specific surface area, allows them to absorb considerably more 
adsorbed substances per unit mass than macroscopic dispersions (Kara-
koti et al., 2012; Walser et al., 2012). The large specific surface area in-
creases the adsorption capacity and adsorption on contaminant nanopar-
ticles, facilitating their transport into cells (Karakoti et al., 2012). Nano-
materials are effective, inexpensive, and environmentally friendly alter-
natives to existing processing materials because they provide high effi-
ciency and excellent characteristics such as high reaction rate and sur-
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face to mass ratio (Patanjali et al., 2019). Due to their small size, metal 
nanoparticles easily penetrate the body through the respiratory system, 
digestion, skin, overcome the biological barriers (hepatocellular, histo-
chemical, placental), bind to nucleic acids and proteins, are embedded 
in cell membranes, penetrate into organelles with changes in their func-
tions and exhibit more pronounced biological activity due to their large 
surface area per unit mass (Diegoli et al., 2008). Metal nanoparticles ac-
cumulate in plant and animal organisms, as well as in microorganisms 
transmitted through food chains, thereby increasing the flow to the 
human body.  

The difference between the physical and chemical mechanisms of 
action of nanoparticles is explained by the surface arrangement of most 
atoms, which changes the physical, chemical, biological, toxicological 
properties of a substance and facilitates interaction with a living orga-
nism (Mikityuk, 2011). The target organs and reaction-response me-
chanisms are different for different metal nanoparticles. They are able to 
induce reactive oxygen species, disrupt membrane structures, penetrate 
tissue barriers, enter cells, and interact with intracellular components 
(Shakibaie et al., 2018). The question of the study of the positive effect 

and toxicity of metal nanoparticles is ambiguous and multifaceted and 
requires a comprehensive approach. This is especially true of nanopar-
ticles used in pharmacology, medicine and agriculture, which contri-
butes to their direct entry into the human body (Halliwell, 2006; Valko 
et al., 2006; Tsekhmistrenko et al., 2018a).  

Therefore, the development of an environmentally friendly and in-
expensive way to synthesize nanoparticles is crucial. There are nume-
rous organisms capable of synthesizing nanoparticles and having the 
potential to use them (Das & Chatterjee, 2019; Sanjay, 2019). Signifi-
cant applications of nanomaterials are usually size dependent, so con-
trolled synthesis of nanomaterials in size is highly desirable (Wang 
et al., 2017).  

For the synthesis of nanoparticles by physical and chemical me-
thods, it is necessary to use reducing agents that have a high reaction 
and toxic effect for human use or are environmentally hazardous, quite 
expensive (Shah et al., 2019). Large-scale synthesis also faces many 
problems, such as low stability and lower monodispersity (Manoj et al., 
2018). Green synthesis (Fig. 1) involves the microbiota as a reducing 
agent such as bacteria, fungi, algae, viruses and plants (Pal et al., 2019).  

 

  
Fig. 1. Biosynthesized NPs pave the way for diverse applications of nanotechnology  

Such "bionanofactories" are accessible to unique structures, are envi-
ronmentally efficient, and have a high selective ability to absorb individual 
elements (Honary et al., 2012; Barabadi et al., 2017; Emmanuel et al., 
2017). Compared to conventional approaches, biosynthetic NPs are better 
applied in different industries, in particular in drinking water treatment 
(Mekkawy et al., 2017; Patanjali et al., 2019). Toxic chemicals produced 
by nanoparticle synthesis can be metabolized by enzymes contained in 
microbiota and plants. Thanks to the "greening" of the synthesis process of 
nanoparticles, the use of biological systems and their components causes a 
reduction of environmental loading and increase of economic efficiency, 
opens additional possibilities of creation of nanoparticles with a given 
composition and properties. Each nanosystem is unique and specific in its 
formulation, compatibility with the active molecules, choice of excipients 
and kinetics, as well as biological efficiency (Dhapte & Pokharkar, 2019).  

Different microorganisms can synthesize nanoparticles intracellu-
larly and extracellularly. In the case of intracellular synthesis due to 
electrostatic interaction, positively charged metal ions are attracted to 
the negatively charged bacterial cell membrane. In addition, the bacteri-
al cell membrane contains enzymes that reduce metal ions to the corres-
ponding nanoscale particles. In extracellular synthesis, the microbial cell 
secretes the reductases used in the bioreduction of metal ions into the 
corresponding MtNPs (Hulkoti & Taranath, 2014).  

Synthesis of nanoparticles with the participation of plants has been 
described in some detail in the literature (Singh et al., 2016). In this ar-
ticle, we will focus on the review of green NPs synthesis using potential 
microbial flora, including bacteria, fungi, yeast, microalgae and viruses.  

Eco-friendly synthesis of nanoparticles by bacteria  
 

Bacteria are known to be able to bind and concentrate dissolved 
metal and metalloid ions. Individual bacteria are capable of converting 
metal ions toxic to their life into non-toxic NPs (Garole et al., 2018; 
Fang et al., 2019). Given this, some bacteria are used as nanofactories, 
providing a new approach to the removal of metal or metalloid ions and 
the synthesis of materials with unique properties (Rautela et al., 2019). 
Among the methods of "green" synthesis bacteria are particularly im-
portant tools for obtaining NPs due to their diversity and high adaptabi-
lity to extreme conditions (Wang et al., 2018c). Bacterial synthesis of 
NPs is extremely promising because of its low energy consumption and 
process controllability (Fang et al., 2019). NPs of metals can be formed by 
bacteria both intracellularly and extracellularly. Extracellular synthesis has 
been found to be more efficient and easier for extraction of NPs. In this 
case, biosynthetic metal NPs are more resistant to oxidation, which 
makes it possible to use them in various fields (Gahlawat et al., 2019).  

Currently, a number of reports have accumulated regarding the syn-
thesis of metal nanoparticles by various bacteria. Thus, ZnO nanopartic-
les were synthesized with the participation of Lactobacillus plantarum 
(Selvarajan & Mohanasrinivasan, 2013) and Aeromonas hydrophila 
(Jayaseelan et al., 2012). Antimicrobial activity against E. coli and 
S. aureus is exhibited by CuO nanoparticles formed with the participa-
tion of Halomonas elongata (Rad et al., 2018). Iron oxide nanoparticles 
obtained using Bacillus cereus had dose-dependent anticancer effects 
against MCF-7 and 3T3 cell lines (Fatemi et al., 2018). Pd nanoparticles 
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synthesized by Alpine Pseudomonas exhibited catalytic activity in de-
chlorination reactions (Schlüter et al., 2014). Silver nanoparticles are ca-
pable of producing various bacteria, including lactic acid bacteria (Sin-
tubin et al., 2009), Bacillus licheniformis (Kalimuthu et al., 2008; Kali-
shwaralal et al., 2010). Cyanobacterial silver nanoparticles have the po-
tential to bind ammonia (Tomer et al., 2019). Biosynthesis of silver 
nanoparticles has been reported using AgNO3 as a precursor to Bacillus 
amyloliquefaciens and Bacillus subtillis (Ghiuță et al., 2018; Yurtluk 
et al., 2018). The antibacterial activity of the nanoparticles was observed 
after 24 h incubation against gram-negative bacteria: Escherichia coli, 
Pseudomonas aeruginosa, Salmonella, and gram-positive: Staphylococ-
cus aureus, Streptococcus pyogenes. In addition, their antifungal activi-
ty against Candida albicans was detected. We obtained AgNPs with the 
participation of Bacillus pumilus, Bacillus paralicheniformis and Sphin-
gomonas paucimobilis of spherical and ovalform with a particle size of 
4–20 nm and a surface area of 118 m2/g (Allam et al., 2019). The silver 
nanoparticles obtained from the Streptacidiphilus durhamensis HGG16n 
isolate had a size of 8–48 nm (Buszewski et al., 2018). Bacillus endophy-
ticus (Gan et al., 2018) and Deinococcus radiodurans (Li et al., 2018) are 
capable of producing silver nanoparticles of various shapes and sizes.  

Bacteria of various species are capable of accumulating nanopartic-
les of cuprum, in particular Shewanella loihica (Lv et al., 2018), Bacil-
lus sp. FU4 (Taran et al., 2017), Shewanella oneidensis (Kimber et al., 
2018). Platinum nanoparticles were obtained by green synthesis with 
the participation of Streptomyces sp. (Sharma, 2017), Magnesium – 
Lactobacillus sp. (Mohanasrinivasan et al., 2018), bismuth – Delftia sp. 
SFG (Shakibaie et al., 2018).  

Bacteria Lysinibacillus sp. and Pseudomonas stutzeri, which were 
adapted to alkaline conditions, can be used for efficient biosynthesis of 
AuNPs, which exhibits potential biomedical use (San Diego et al., 2019). 
AuNPs nanoparticles obtained using Lyngby Majuscule are used to pre-
vent myocardial infarction (Bakir et al., 2018). Marine bacteria Marino-
bacter algicola formed various types of AuNPs at pH 7.0, at 30 °C in 
the presence of nitrate reductase, such as spherical, triangular, pentagon-
al and hexagonal with the average size of 4–168 nm (Gupta & Padma-
nabhan, 2018). Extracellular recovery of palladium to PdNPs was per-
formed using Geobacter sulfurreducens (Yates et al., 2013), Shewanel-
la oneidensis MR-1 (Wu et al., 2018), Shewanella sp. CNZ-1 (Zhang & 
Hu, 2017), S. loihica PV-4 (Wang et al., 2018b), Bacillus sp. GP 
(Zhang & Hu, 2018).  

A number of studies had shown that not only living bacteria but al-
so the dead forms of some bacteria can also be used for the biosynthesis 
of NPs. However, the mechanisms of these processes differ. As a rule, 
the metabolic process may be responsible for the bioreduction of NPs in 
living bacteria (Reverberi et al., 2017; Allam et al., 2019).  

Recently, more and more bacteria have been used for the synthesis 
of selenium, which is widely used in agriculture, the use of which in-
creases the productivity of animals and poultry much better than inor-
ganic forms (Singh & Singh, 2019; Tsekhmistrenko et al., 2019). For 
this purpose, Rhodococcus aetherivorans BCP1 (Presentato et al., 2018), 
Acinetobacter sp. SW 30 (Wadhwani et al., 2018), Rahnella aquatilis 
HX2 (Zhu et al., 2018), Alcaligenes sp. CKCr-6A (Mesbahi-Nowrouzi 
& Mollania, 2018), Alishewanella sp. WH16-1 (Xia et al., 2018), Васil-
lus subtilis IMV B-7392 (Tymoshok et al., 2019) were used.  
 
Mechanisms of synthesis of nanoparticles by bacteria  
 

Specific mechanisms of NPs formation in different organisms, both 
in unicellular and multicellular, have been established. However, the 
synthesis of NPs follows a generalized scheme in which metal ions are 
captured by microbial cells or pooled to the size of NPs in the presence 
of an enzyme (Yin et al., 2016).  

Nanoparticle biosynthesis is carried out by culturing microorga-
nisms in specific nutrient media containing the corresponding ions. De-
pending on the localization site, the synthesis of nanoparticles by micro-
organisms (in particular bacteria, fungi, actinomycetes, yeast and even 
viruses) is classified into intracellular and extracellular (Shankar et al., 
2016). Metal ions enter the bacterial cell through ion channels, through 
active transport, endocytosis, or penetration through the lipid membrane 
(Grzelczak & Liz-Marzán, 2014). The process of intracellular synthesis 

involves the process of trapping, bioreduction, and capping of various 
nanoparticles (Li et al., 2011a). Extracellular synthesis consists of en-
zyme secretion, bioreduction and particle capping (Singh & Singh, 
2019). Most published reports (Singh, 2015; Banerjee & Rai, 2018) 
have argued that extracellular nanoparticle synthesis is preferable be-
cause low-flow and purification processes are easier compared to intra-
cellular methods. Most published works (Singh, 2015) argue that extra-
cellular nanoparticle synthesis is preferable because downstream and 
purification processes are easier than intracellular methods. One com-
monly used enzyme is nitrate reductase, which may be responsible for 
the synthesis of nanoparticles, such as silver and gold nanoparticles.  

In the process of bioreduction (Fig. 2), individual enzymes play an 
important role in the transport of electrons from donors to the positive 
metal ion (Siddiqi et al., 2018).  

  
Fig. 2. General scheme of synthesis of nanoparticles  

of metals by microorganisms  

Some bacterial protein functional groups (–NH2, –OH, –SH, and  
–COOH) play an important role in the formation and stabilization of NPs. 
They provide binding sites for fixation of metal ions with further reduction 
of their extracellular concentration and localization on the cell wall or in 
the periplasmic space. Synthesis of Au-NPs gold nanoparticles has been 
reported on Deinococcus radiodurans protein extract (Li et al., 2018). 
Free cysteine and surface-bound microbial protein are involved in the sta-
bilization of NPs, which prevents their aggregation (Zakaria et al., 2013). 
Supernatants of Enterobacteriaceae culture are characterized by significant 
activity of the nitroreductase enzyme, which is involved in bacterially 
mediated synthesis of Au-NPs (Ramezani et al., 2010).  

Pathways related to green nanomaterial synthesis are of paramount 
importance for commercializing nanotechnology as well as for environ-
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mental sustainability (Nasrollahzadeh et al., 2019). Synthesis mechan-
isms will also improve the processes of bioremediation and biominera-
lization of pollutants in the environment. Biomineralization is the ma-
ximum process of controlling the final fraction in the biogeochemical 
cycle and environmental impact of heavy metals (Diaz et al., 2015). Un-
derstanding the pathways of microbial transformation at the genetic 
level may lead to the development of new genetic tools to accelerate 
bioremediation strategies (Wu et al., 2016; Kang et al., 2017).  

Alternative ways of synthesis of nanoparticles have been establi-
shed. The likely mechanism of nanoparticle biosynthesis may include 
more than one cellular component (Ovais et al., 2018b). It is believed 
that nitrate reductase acts as a principal reducing agent in the transfor-
mation of metals into nanoparticles (Gupta & Padmanabhan 2018; Ali 
et al., 2019). Reducing the amount of metal ions, in particular Ag+, is the 
process of enzymatic reduction by electron transport. Cofactors such as 
NADH in NADH-dependent nitrate reductase enzymes are required to 
generate metallic LFs (Kalimuthu et al., 2008; Kalishwaralal et al., 2010). 
According to other researchers (Sintubin et al., 2009; Li et al., 2011), the 
increase in pH directly correlates with competition for the negatively 
charged binding site between the metal ion and protons.  

The synthesis of AgNPs from probiotic tablets and yoghurt media-
ted by Lactobacillus has also been reported. Lactate from NADH, de-
pending on the lactate dehydrogenase and pyruvate, generates two pro-
tons involved in the synthesis process along with thioredoxin systems 
and glutathione. All components work in concert to facilitate the syn-
thesis of nanoparticles (Nangia et al., 2009).  

The effect of visible light on the production of AgNPs has been in-
vestigated, especially in the processing of Klebsiella and silver nitrate by 
visible light, which has led to changes in the rate of their synthesis 
(Mokhtari et al., 2009). It is suggested that the accumulation of silver 
outside the cell membrane of bacteria is associated with the response to 
the potential with gaseous H2S, which transformed it into a non-toxic 
form by Pseudomonas cells (Klaus et al., 1999). The bioreduction of 
ionic silver in AgNPs is due to the cofactor and enzyme nitrate reduc-
tase released by Bacillus licheniformis. Optimization in activity and 
production has confirmed the hypothesis that catalytic proteins are in-
volved in recovery and synthesis (Vaidyanathan et al., 2010). However, 
bacterial interaction with different metals is not yet fully understood.  

The role of peptides and individual amino acids in the microbial 
synthesis of AgNPs nanoparticles has been proved. By adding peptides 
to the silver ion solution, they reacted with metallic ion nuclei and redu-
ced accessibility around metal nanoclusters (Naik et al., 2002; Bala-
chandran et al., 2013). Peptides containing the amino acids cysteine, 
methionine, arginine and lysine can attach to the nucleus surface and be 
used in the production of AgNPs (Selvakannan et al., 2013). The amino 
acid tyrosine under alkaline conditions acts as a reducing agent. This is 
due to the fact that the phenolic group of tyrosine can be converted to the 
group of quinone (Selvakannan et al., 2004; Dubey et al., 2015). In additi-
on, tyrosine-containing oligopeptides at the free N-terminus provide stabi-
lity to the nanoparticles (Shankar et al., 2015) and promote metal recovery 
(Daima et al., 2014). These results are consistent with the notion that tyro-
sine plays a key role in in situ reduction (Ali et al., 2019).  

The amino acid tryptophan can be used as a reducing agent for the 
synthesis of nanoparticles because of its ability to give electrons. In this 
case, tryptophan becomes a tryptophol radical (Si & Mandal, 2007). 
Aspartic acid and glutamic acid are involved in the synthesis of AgNPs 
nanoparticles in the presence of carboxyl groups of short yeast peptides.  

Enzymes can play a major role in the recovery of metal salts with 
the subsequent formation of metal NPs. Optimization of various para-
meters can improve the synthesis of AgNPs. By controlling the mecha-
nistic steps, the monodispersity and homogeneity of the nanoparticles 
are achieved (Ali et al., 2019).  

The role of NADH or NADH-dependent enzymes released extra-
cellularly for the formation of gold nanoparticles using the Rhodopseu-
domonas culture have been established (He et al., 2007). Electrons are 
transmitted via NADH-dependent reductase to Au3+ gold ions, conver-
ting them to elemental gold (Au0) (Nangia et al., 2009). The biosynthe-
sis of Au nanoparticles is activated with the participation of peptides that 
act as a stabilizing agent (Singaravelu et al., 2007; Das & Marsili, 2010). 
Synthesis of platinum nanoparticles was carried out with the participa-

tion of a hydrogenase enzyme extracted from sulfate-reducing bacteria 
(Martins et al., 2017). Various microbes serve as nanofactories for the 
synthesis of platinum nanoparticles (PtNPs), in particular Desulfovibrio 
vulgaris, Acinetobacter calcoaceticus (Gaidhani et al., 2014), Shewanel-
la (Martins et al., 2017). The nanoparticles are localized within the 
periplasmic membranes.  

Chelating agents, such as siderophores, bind heavy metal ions to 
form gaseous compounds. Low molecular weight tripeptide glutathio-
ne, metallothioneins containing cystine-rich proteins isolated from Syn-
eococcus sp., Pseudomonas putida, Cyanobacterium and E. coli, per-
form the major function of metal detoxification.  

Aerobic biosynthesis of monodisperse nanosized Se-NPs is carried 
out both intracellularly and extracellularly by Enterobacter cloacae 
Z0206 with the participation of a selenite-reducing factor, which is a 
special form of fumarate reductase (Shin et al., 2009). Selenium nano-
particles are obtained with the participation of Pseudomonas putida, 
which is a strictly aerobic species, and no substrate other than oxygen 
serves as the ultimate electron acceptor. The proposed mechanism is a 
two-step process that included chelation of SeO3

2– thiol-containing mo-
lecules with subsequent formation of selenodiglutathione. Selenodiglu-
tathione is a substrate of glutathione reductase that produces unstable 
intermediates (Avendaño et al., 2016; Wang et al., 2017a).  

Cytochrome is involved in the bacterial synthesis of NPs. Thus, the 
pigment Chryseobacterium artocarpi CECT 8497 is used to create 
coexisting spherical Ag-NPs (Venil et al., 2016). Biosynthesis of extra-
cellular Cu-NPs from Shewanella loihica PV-4 as electron donors for 
Cu2+ used cytoplasmic components such as NADH/NADPH, vitamins 
and organic acids. Cytochrome c for electron transfer was the primary 
reducing factor (Lv et al., 2018).  

Lactate was used as an electron donor to form CuNPs from Shewa-
nella oneidensis MR1. Reductase in the periplasm and cytoplasm pro-
motes the conversion of Cu2+ to Cu0. Damage to the membrane due to 
Cu toxicity can promote the transport of NPs through the cytoplasmic 
membrane. Cu2+ can be converted to Cu+ in the cytoplasm and then Cu+ 
is able to disproportionately form Cu2+ and Cu (Kimber et al., 2018).  

Studies on E. coli and Staphylococcus aureus have shown that sil-
ver ions condense to nanoparticles and accumulate around the cell wall 
or inside the cell and affect DNA replication and interact with thiol 
groups, causing protein inactivation (Feng et al., 2000). It also leads to 
the formation of reactive oxygen species (Matsumura et al., 2003).  

The production and overuse of synthetic dyes, pesticides and phar-
maceuticals have led to environmental pollution (Doshi et al., 2018; Hu 
et al., 2018; Allam et al., 2019; Singh et al., 2019). Contaminated sewage 
and soil usually contain large amounts of heavy metals and metalloids 
(Choi et al., 2018). Alternatively, however, waste can also be used as a 
resource for the production of NPs through a biological pathway for the 
degradation of specific pollutants (Chen et al., 2014; Huang et al., 2018).  

The marine bacterium Pseudoalteromonas sp CF10-13 is potential-
ly effective in the bleaching and degradation of Naphthol Green B 
(NGB) metal complex in a wide range of salinity, dye concentration and 
alkalinity under anaerobic conditions. Naphthalenesulfonate, the basic 
structure in the NGB molecule, is further decomposed into low-toxic 
benzamide (Cheng et al., 2019).  

B. paralicheniformis strain KJ-16 was the most effective isolated 
bacteria to provide an extract for AgNPs biosynthesis and dye removal. 
This method may be considered easy and eco-friendly, and could be 
applicable for large-scale decontamination of wastewater from harmful 
dyes (Nayna & Tareq, 2019).  

Copper nanoparticles (NCu) have been proposed as an antimicrobial 
agent in agriculture because they can interact with numerous contami-
nants, including pesticides, in particular atrazine (Parada et al., 2019).  

Various reducing and oxidation methods are used to neutralize 
chlorinated aromatic compounds, which are widely used in many indus-
tries. An efficient and easy treatment of these xenobiotics is the treat-
ment of their biosynthetic Pd-based NPs. The cell surfaces of Desulfo-
vibrio desulfuricans, Desulfovibrio vulgaris were used to fabricate a 
new bioorganic catalyst by reducing Pd2+ to Pd0 on the cell surface 
using hydrogen as an electron donor. The rate of dechlorination of bio-
Pd-NPs was approximately 30 times higher than that of chemical Pd-
NPs (Baxter-Plant et al., 2003). Positive results for 4-nitrophenol neutra-
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lization were obtained with the use of Pd/Au-NPs formed by the marine 
bacterium Bacillus sp. GP (Zhang et al., 2017).  

Alternatively, waste can be used as a resource for the production of 
NPs through a biological pathway for the degradation of specific pollu-
tants (Huang et al., 2018; Seifan et al., 2018; Zhang et al., 2018).  

The interaction of nanoparticles and germs plays an important role 
in the treatment of various diseases in the form of antimicrobial agents. 
The mechanism of inhibition of metabolism of various bacteria and 
fungi by nanoparticles involves a number of pathways. Metal ions that 
form nanoparticles inside cells promote the degradation of intracellular 
ATP and interrupt DNA duplication (Lok et al., 2006). NPs generate re-
active oxygen species (ROS), which causes damage to cellular structu-
res (Kim et al., 2007). Nanoparticles are accumulated and dissolved in 
the bacterial membrane, which leads to changes in membrane permea-
bility, there is a gradual release of lipopolysaccharides, membrane pro-
teins and intracellular components and dispersion of proton motive 
force (PMF). Oxidation reactions affect cell survival, cell death, diffe-
rentiation, cell signaling and lead to the generation of ROS under stress 
(Mueller et al., 2005; Touyz, 2005). The various components of reactive 
oxygen species include free radicals such as superoxide (O2

•–), singlet 
oxygen (1O2), hydroxyl (HO•), hydroperoxyl (HO2

•), carbon dioxide 
(CO2), carbonate (CO3

•–), peroxyl (RO2
•) and alkoxyl (RO•) and non-

radical substances such as ozone (O3), hydrogen peroxide (H2O2), nitric 
oxide (NO), hydrochloric acid (HOCl), hypochlorite (OCl–), hypobro-
mic acid (HOBr), organic peroxides (ROOH), peroxynitrite (ONOO–), 
peroxynitrate (O2NOO–), peroxinic acid (ONOOH), and peroxomono-
carbonate (HOOCO–) (Halliwell, 2006; Pantopoulos & Schipper, 2012; 
Wu et al., 2014).  

Superoxide produced by nicotinamide dinucleotide phosphate 
(NADPH), oxidase (NOX) and mitochondria inactivates various enzy-
mes and initiates peroxide oxidation of cell membrane lipids (Singh & 
Singh, 2019). Under various physiological conditions, intracellular sta-
ges are rigorously modulated by various detoxifying enzymes, such as 
SOD, catalase, and glutathione peroxidase, or by various antioxidant 
compounds, including ascorbic acid, vitamin E, flavonoids and glutathi-
one (Wu et al., 2014).  

Nanoparticles (silver, zinc oxide and copper oxide) activate ROS 
synthesis, which directly and indirectly play an important role in geno-
toxicity. DNA degradation caused by oxidative stress destabilizes a va-
riety of biological mechanisms, including mutagenesis (Fu et al., 2014а). 
DNA damage causes disruption of the structure of nitrogenous bases, 
sugars, single and double breaks, DNA protein crosslinks, etc. (Valko 
et al., 2006; Fu et al., 2014a).  

The main disadvantage of using a microbial source is the mainten-
ance of aseptic conditions, the high cost of isolation and their mainten-
ance in culture media (Rautela et al., 2019). NPs synthesized by bacteria 
without high-temperature treatment or additional of chemicals have 
many unique properties. Due to their biocompatibility and stability, they 
are a real alternative to the physical and chemical methods traditionally 
used in catalysis (Jiang et al., 2018; Patanjali et al., 2019).  
 
Prospects for the use of nanoparticles  
 

The need for a comprehensive study of nanoparticles (metals and 
non-metals) is due to the considerable amount of scientific research, 
which has shown that their properties differ significantly from similar 
macroparticles and from the substances from which they were obtained 
(Nasrollahzadeh et al., 2019). These properties depend on their compo-
sition, nature, shape, size, charge, structural features, both the surface of 
the nanoparticle itself and the surface modifier molecules (if used), the 
preparation methods, and the process parameters (Gupta & Padmanab-
han, 2018). There are many aspects of these biological methods that can 
be detected and then manipulated (Dhapte & Pokharkar, 2019). Nano-
biotechnologies, based on the use of bacteria, contribute to the reduction 
of nanoparticles, have high commercial potential with the prospects of 
widespread use. The nanoparticles obtained in this way show better bio-
compatibility due to the absence of adsorbed toxic substances. Much of 
the experimental research has been conducted to create diagnostic and 
therapeutic nanosheets (Barabadi et al., 2017; Bakir et al., 2018; Moha-
nasrinivasan et al., 2018).  

Specialists of various profiles – material scientists, chemists, biolo-
gists, physicians and veterinarians – are involved in this problem (Pal 
et al., 2019). The purpose of these studies is to create nanoparticles, not 
as a final product, but as a feedstock for biocompatible substances. 
Compared to conventional pathway NPs, biosynthetic NPs have some 
unique properties and can be used without side effects in areas such as 
catalysis and degradation of organic pollutants (Liu et al., 2015a; Naim 
et al., 2016). Priority research is to determine the effects of the impact of 
MeNPs on any biological entity that is required when designing bio-
technology products with the involvement of nanotechnology. Such 
studies can only be adequate with the consistent use of biomarkers – 
key systemic characteristics of a living organism (biochemical, physio-
logical, immunological, etc.). Several basic mechanisms of contact 
interaction of metals in different chemical forms on the model of cells of 
microorganisms are described. The mechanism of passive deposition of 
metals by a bacterial cell is based on the physical and chemical binding 
of the structural components of the cell membrane. Metabolism-depen-
dent cumulation of metals is associated with the functioning of cellular 
enzyme systems that provide metabolism and energy responses to the 
environment. Prokaryotic cells, due to their unique structural properties 
and metabolism, are able to actively interact with metals and can be a 
model system for studying the relationship between a cell and MeNPs.  
 
Potential danger of using nanoparticles  
 

The potential hazards and biocompatibility of MeNPs are mostly 
individual for different strains within one taxonomic species of micro-
organism; on the other hand it is difficult to isolate the specific mechan-
isms of biocompatibility or cytotoxic action of MeNPs, as they can vary 
greatly even within the same class of nanomaterials, so this question is 
still debatable (Das & Chatterjee, 2019). The effective sizes and concen-
trations of MeNPs have been proved, in which the effect on the struc-
tural and functional level is observed. MeNPs, depending on the size 
and concentration of metal cations, can affect the activity of many en-
zymes, including membrane bound ones (Fu et al., 2014). A particular 
problem is the handling of nanoparticles and nanomaterials, which can 
cause unusual effects on human health. Because the nanoparticles are 
small in size, it can allow them to penetrate the human organs and tis-
sues, bypassing the normal biological barrier (Sanjay, 2019).  

The study of the influence of various factors on the structural and 
functional state of bacterial cells is of interest for understanding the 
regulation of metabolism during adaptation. Determining critical points 
in the phases of microbial population development, in particular when 
maximum target product accumulation occurs, as well as the search for 
substances that could directly influence the management of physiologi-
cal and biochemical responses of population cells, is becoming a central 
task of applied biochemistry and biotechnology research. One of the 
main steps in the application of each MeNPs as a potential substance is 
a comprehensive assessment of their biological safety in each case. 
Compared to others, the pharmacological effects of MeNPs have signi-
ficant advantages in their ability to biodegrade. The pharmacodynamics 
of MeNPs are due to their physicochemical properties. However, the 
pharmacokinetic and toxicokinetic action of MeNPs in any cell, organ, 
and organism requires detailed study, lacks data on target organs, pene-
tration through biological membranes, and bioavailability. The indirect 
danger of MeNPs is due to their cytogenotoxicity, ability to cause in-
flammation and oxidative stress at the cellular level. Such studies should 
include the determination of MeNPs safety in the in vitro system fol-
lowed by toxicological experiments in the in vivo system that include 
testing for genotoxicity, mutagenicity, biocompatibility and bioavailabi-
lity by determining the genetic, biochemical and cytological markers of 
the biological potential of the organization.  

It is promising to study the systemic response of macroorganisms to 
the action of nanoparticles, which in general may differ significantly 
from the results obtained in experiments on isolated cells. Research 
should be based on more data, including preclinical animal testing using 
a set of systemic markers (physiological, biochemical, immunological, 
etc.), including long-term (chronic) ones.  

Finally, major issues such as mass production, leaching, poisoning/ 
toxicity, regeneration, reuse and production costs, process optimization 
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are major barriers to the transfer of nanoparticles based on the use of 
nanoparticles from laboratory to commercial scale (Ali et al., 2019a; 
Goutam et al., 2020).  
 
Conclusion  
 

This paper presents separate results on the general characteristics of 
nanoparticles and their production by the use of green chemistry me-
thods. The prospect of using bacteria as a kind of "biofactory" for the 
synthesis of metal nanoparticles and essential elements is shown.  

The vast array of scientific research shows that nanoparticles are 
nowadays characterized by a wide range of applications, in particular in 
engineering, biology, medicine, agriculture, the food industry and the 
like. It is proved that nanoparticles exhibit high biological activity due to 
a number of factors that must be taken into account in order to target 
them. Eco-friendly synthesis methods should aim at creating predictab-
le, standardized systems. At the same time, samples of biogenic nano-
particles will become more homogeneous and reproducible, so the risks 
to the environment and health will be minimized. The aspects of the 
interaction of nanoparticles and biological molecules, in particular with 
proteins, carbohydrates and lipids, remain multifaceted. For more prac-
tical use of nanoparticles in biology and medicine, it is necessary to 
focus on their metabolism in humans and animals (Grillone et al., 2017; 
Tsekhmistrenko et al., 2019). It is promising to study the possibility of 
synthesis of nanoparticles of different elements by one type of bacteria, 
which raises a number of new questions and problems.  

Research into the direction of nanoparticle synthesis and applica-
tion requires a comprehensive, safe and responsible approach to assess-
ing potential health and environmental risks, which underpins European 
Union policy on nanotechnology (Rauscher et al., 2012).  
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