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A B S T R A C T   

Background: In the sheep breeding industry, heat stress caused by the general increase in global temperature has 
become a significant issue, having both direct and indirect effects on animal health and productivity. The 
identification of effective pathways for responding to heat stress and immune responses, as well as the discovery 
of related genes, can improve the production and sustainability of genetic diversity in this area. In this study, we 
used nucleotide diversity (θπ) and FST statistical measurements to analyze the genomic data of the native Iranian 
sheep in order to find potential genes related to heat adaptation and immune response. We also compared the 
whole genome sequencing data of 29 indigenous Iranian sheep (the Afshari, Ghezel, Makuei, Moghani, Shal, Zel, 
Karakul, Grey-Shiraz, Baluchi, and Kermani breeds) with a number of other sheep breeds from Asia (n = 28), 
Europe (n = 28), and Africa (n = 25) to evaluate the genetic structure of the Iranian sheep population. 
The results: The results from the sheep population genetic analysis showed a clear separation between different 
populations that corresponds well with their geographic origins. Iranian sheep were further divided into a 
southern and a northern group, which coincided with the most prominent climatic division in Iran. Our search to 
identify potential genomic regions under selection showed several candidate genes involved in (1) response to 
heat stress (SIK2, FER, ATP1A1, CDK5RAP3, and TLR4), (2) immune response in hot and dry environments 
(CD109, CR2, EOMES, and MARCHF1), (3) response to drought stress and adaptation to desert areas (ZFP1, 
PLCB1, and PDGFD), and also (4) response to heat stress by controlling digestive metabolism (HTR4, TRHDE, and 
ALDH1A3). 
Conclusions: The findings of this study may aid in our understanding of the molecular processes by which tiny 
ruminants adapt to hot, dry environments. In addition to the results of earlier studies, our findings also revealed a 
number of novel candidate genes related to heat adaptation. These genes will be valuable for future studies to 
choose livestock breeds that live in desert regions.   

Abbreviations: AMSL, above mean sea level; BAM, Binary alignment map; Breed n, The number of breeds BWA: Burrows wheeler aligner; FST, Fixation index; 
GATK, Genome analysis toolkit; Θπ, Nucleotide diversity; GCTA, Genome‑wide complex trait analysis; NCBI, National Center for Biotechnology Information; PCA, 
Principal component analysis; SNP, Single‑nucleotide polymorphism; SRA, Sequence Read Archive. 
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1. Introduction 

Farm animals provide unique models for genetic investigations of 
phenotypic evolution, as they contain useful alleles acquired by vigorous 
selection over thousands of generations (Andersson, 2016). Local live
stock breeds have been adapted to diverse environmental climates as the 
results of thousands natural selection. Sheep were among the earliest 
animals that were likely domesticated from Asian Mouflons (Ovis Ori
entalis) in the Fertile Crescent, presumably in southeast Anatolia and/or 
the Zagros area, some 11,000 years before the present (BP) (Zeder, 
2008). Following that, this animal’s phenotypic features showed a 
substantial amount of change as a result of artificial selection and 
geographic isolation. 

Sheep provide the main animal-based proteins for human con
sumption. As a result, they have a significant impact on the agricultural 
economy. Asia is home to over 44 % of the world’s sheep (Skapetas and 
Kalaitzidou, 2013), and Iran has the greatest population of sheep in the 
Middle East with 52 million sheep of various genetic potentials 
(Mohammadabadi, 2016). These breeds’ names typically reflect their 
physical traits and place of origin. Since they have not yet been sub
jected to specific artificial breeding programs, indigenous Iranian sheep 
may have unique gene pools as a result of long-term adaptability to their 
habitat (Mohammadabadi et al. 2018). 

Numerous studies and pieces of evidence support the idea that future 
ruminant product availability will be impacted by climatic changes. 
Among the environmental variables affecting animals, heat stress is one 
of the factors that has an effect on animal production in many parts of 
the world (Sejian et al. 2018). The susceptibility of livestock to heat 
stress differs by species, genetic potential, life stage, method of pro
duction, and also nutritional state (Das et al. 2016). According to pre
vious studies, heat stress has an impact on the majority of livestock’s 
production processes, including growth performance (Baumgard et al. 
2012), the production of milk (Das et al. 2016), reproductive efficiency 
(Rhoads et al. 2009), meat production (Archana et al. 2018), and disease 
occurrences (Rojas-Downing et al. 2017). Sheep in hot, semi-arid cli
mates are usually reared using extensive systems. In these geographical 
regions, the extreme environmental conditions impact the ability of 
animals to survive and production. For example, in these regions, the 
quantity and quality of water and the availability of feed resources 
greatly vary in different seasons of a year. During the summer, the an
imals frequently have to travel vast distances to pursue these limited 
resources. Therefore, grazing animals may be subjected to a variety of 
stressors, including heat stress, a lack of food and water, and physical 
stress from moving through hot, dry conditions (Sejian et al., 2013). 
Effective strategies are needed to reduce the negative effects of the 
climate changes (Henry et al. 2018). Identification of specific genes that 
are related to the thermo-tolerance may assist in the selection of superior 
adapted breeds, which can withstand the heat stress adversities effec
tively. Finding the genes responsible for important ecological and eco
nomic traits can be aided by examining the genomes of locally adapted 
animals (de Simoni Gouveia et al., 2017). 

Iran, which is located in the Africa-Asia belt and has 90 % dry re
gions, are regarded as a hot and arid nation in terms of climate globally 
(Nouri and Homaee, 2020). There are more than 27 different breeds and 
ecotypes of sheep in Iran that have adapted to various climatic condi
tions (Mohammadabadi, 2016). For example, medium-sized Moghani 
(fat-tailed) and Zel sheep (tailed and without fat-tailed) are raised in 
Iran’s cold, mountainous regions, which have a diverse range of vege
tation and rainfall. While Kermani, Baluchi, and Karakul sheep (fat-
tailed, carpet-wool) live in desert regions with high solar radiation, low 
rainfall and high daytime temperatures. This results in a lack of forage 
and a lack of species diversity in rangeland plants. Although native 
Iranian sheep breeds have significant genetic potential for production, 
less study has been done on them than that on other sheep breeds to 
boost their productivity. In Iranian sheep breeds, only a few studies on 
genome-wide associations (Abdoli et al. 2019; Gholizadeh et al. 2015; 

Almasi et al. 2020; Ghasemi et al. 2019) and signature selection map
ping (Manzari et al. 2019) have been conducted. In recent research on 
native Iranian chickens, several genes have been identified as candidates 
for desert climate tolerance (Asadollahpour Nanaei et al. 2022). 

In this study, whole-genome sequencing (WGS) data from indigenous 
Iranian breeds of sheep (ten different populations) (Fig. 1), together 
with breeds from Asia, Europe, and Africa, were carried out to charac
terize the genetic structure of the Iranian sheep population. Addition
ally, nucleotide diversity (θπ) and FST statistical methods were 
performed to compare the genomic data of the native sheep population 
from cold and hot parts of Iran in order to find potential candidates for 
genes involved in heat tolerance and immune response. Our findings can 
be used for the genetic improvement of thermal tolerance in harsh en
vironments, especially for small ruminants. 

2. Material and methods 

2.1. Genomic sequence data 

In the present study, we collected blood samples (5 ML from the 
jugular vein) from three indigenous breeds of Iran, including Zel (n = 4), 
Karakul (n = 4), and Kermani (n = 2), that live in the Mazandaran 
(AMSL: 2 m, temperate and mild mountainous climate), North Khorasan 
(AMSL: 300 m, hot and dry climate), and Kerman (AMSL: 1755 m, hot 
and dry climate) provinces, respectively. Using the salting out approach, 
total genomic DNA was extracted from whole blood samples. Genome 
sequencing was done in China using the Illumina NovaSeq 6000 plat
form. We also used SRA data of 109 sheep from different breeds 
worldwide, including Iran (n = 19, breed n = 7), China (n = 11, breed 
n = 1), Turkey (n = 8, breed n = 5), Iraq (n = 3, breed n = 2), Pakistan 
(n = 6, breed n = 3), Africa (n = 25 of Libya n = 8, breed n = 1, Egypt 
n = 7, breed n = 3, South-Africa n = 3, breed n = 2, Ethiopia n = 7, 
breed n = 3), Europe (n = 28 of Germany n = 3, breed n = 1, Italy 
n = 3, breed n = 2, Switzerland n = 6, breed n = 2, Spain n = 9, breed 
n = 4, United Kingdom n = 7, breed n = 6), and Wild (n = 9), which 
was downloaded from the NCBI database (https://trace.ncbi.nlm.nih. 
gov/Traces/sra/?run) (Additional file 1: Table 1) (Fig. 2 A). 

2.2. Quality checking, and SNP calling 

The quality of all the genome data was checked by the FastQC soft
ware. Then, using the Burrows-Wheeler Aligner (BWA mem Version 
0.7.10), all the examined samples were aligned to the sheep genome 
reference (https://www.ncbi.nlm.nih.gov/assembly/GCF_00274215.1/ 
) (Li and Durbin, 2009). SAM (.sam) and BAM (.bam) files were created 
using the SAMtools program, which was also used to read, sort, and 
index the files (Li et al. 2009). Potential PCR duplicates were eliminated 
using the Picard toolkit (http://broadinstitute.github.io/picard) to 
reduce the possibility of false-positive variant calling. Using tools from 
the Genome Analysis Toolkit (GATK), base quality score recalibration 
(BQSR) and local realignment around indels were carried out to improve 
the alignment accuracy (McKenna et al. 2010). The GATK tool was used 
to call and filter final variations (SNPs, single nucleotide 
polymorphism). 

2.3. Population structure and admixture analyses 

The phylogenetic tree was generated in this study using the 
maximum likelihood (ML) method. First, we used Samtools’ vcf2fq in 
the vcfutils.pl file to convert the filtered VCF file into consensus FASTA 
files, and then we utilized FastTree 2 software (Price et al. 2010) to 
generate the tree. Visualizing the topological structure was done using 
the web application iTOL (https://itol.embl.de/). SNP datasets in PLINK 
were first pruned for LD (using the PLINK option in pairs 50 50 0.1) 
(Purcell et al. 2007) because linkage disequilibrium (LD) can affect ge
netic structure analysis (Calus and Vandenplas, 2018). Then, using SNPs 
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pruned for LD, principal component analysis (PCA) and ADMIXTURE 
were carried out. To examine genetic variances among all sheep groups, 
we employed genome-wide complex trait analysis (GCTA) based on SNP 
genotypes (Yang and Lee, 2011). We utilized the admixture model 
implemented in the ADMIXTURE program, with an ancestral population 
(K) size ranging from 2–6, and 10,000 iterations for each run, to 
investigate the potential genetic admixture between sheep populations 
(Alexander et al. 2009). 

2.4. Statistics to explore selective sweep region 

To find selective sweeps in the current work, nucleotide diversity (Pi) 
and FST approaches were applied. One of the most frequently used 
methods for studying genome-wide variance is the FST statistic. We 
calculated the weighted genome-wide FST (Weir and Cockerham, 1984), 
which is a more accurate indicator of the mean genetic distance between 
groups with different sample sizes (Spolaore and Wacziarg, 2009). Then, 
the software VCFtools was used to assess the nucleotide diversity (θπ) 
(window-pi 50,000 –-window-pi-step 25,000) (Danecek et al. 2011) and 
the top 1 % was detached as positively selected regions. Sliding window 
analyses with a window size of 50 kb and a step size of 25 kb were 
conducted for the entire genome. SNPs in each window were averaged 
for FST and log2 (θπ Iran’s desert sheep population/θπ Iran’s cold sheep 
population). 

3. Results 

3.1. Population structure 

The results of the phylogenetic tree evaluation clearly showed the 
differentiation of various populations. The wild breed of sheep with a 
distinct node and branch was the most recognizable breed in the 
phylogenetic tree. Additionally, European breeds were placed next to 
Turkish sheep and were divided into two separate clusters (Fig. 2 B). In 
an admixture analysis with K = 2, wild sheep were separated from 
domesticated sheep breeds. While at K = 3, European sheep breeds were 

separated from the other domesticated breeds. By running the admixture 
from K = 4–5, the domestic breeds were separated based on the 
geographical region (Asia, Europe, and Africa). From K = 4–6, Iranian 
breeds showed some admixture with European and African breeds 
(Fig. 2 C). Also, the topological patterns were found in the phylogenetic 
tree and the admixture supported by PCA analysis. In the level genome, 
PC1 and PC2 accounted for 3.56 % and 2.38 % of the genetic variation, 
respectively. PCA analysis divided all individuals into three general 
categories. The first cluster included all individuals from Asian countries 
(Iran, Iraq, Pakistan, and Turkey); the second cluster is related to Eu
ropean breeds; and the third cluster included all individuals from Africa 
(Fig. 2 E). The population of indigenous Iraqi sheep had the highest 
levels of nucleotide variation, while samples of sheep from China and 
Pakistan had the lowest levels, according to the box plot of nucleotide 
diversity (π). Other sheep populations, including those from Africa, 
Europe, Iran, and Turkey, had similar levels of nucleotide diversity 
(Fig. 2 D). 

3.2. Scanning of highly differentiated genomic regions 

In total, 742 and 798 protein-coding genes were found in windows 
with high FST (5 % cutoff) and low log2 θπ ratio values (1 % cutoff), 
respectively, in the genomics data comparison between the indigenous 
sheep populations from cold climates and the desert and hot areas of 
Iran (Additional file 2: Table 2 and Fig. 3 and Additional file 3: Table 3). 
We identified a number of genes associated with environmental adap
tation to heat (Additional file 4 Table 4). The findings demonstrated that 
a number of genes, including SIK2, FER, TLR4 (top 1 % for Pi), and 
ATP1A1, CDK5RAP3 (top 5 % for FST), play a significant role in the 
pathways related to heat stress responses, including the activation of the 
oxidative stress system, cell protection from heat damage, and tissue 
repair. We identified several genes, including CD109, CR2 (top 5 % for 
FST and 1 % for Pi), EOMES, and MARCHF1 (top 1 % for Pi), that are 
significant for the signals relating to immune system activity and heat 
resistance. The ZFP1, PLCB1 (top 5 % for FST), and PDGFD genes (top 1 
% for Pi) were further identified as potential candidates for adaptation 

Fig. 1. Geographic locations of indigenous Iranian sheep breeds (Raziei, 2017).  
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to arid environments. The results also showed that the HTR4, ALDH1A3 
(top 1 % for Pi), and TRHDE genes (top 5 % for FST) are resistant to heat 
shock because they function in the pathways that regulate digestion and 
energy. 

4. Discussion 

4.1. Genetic diversity and population structure 

The analysis of the genetic structure of sheep breeds reflects their 
domestication and subsequent organization into separate breeds. Ge
netic variety conservation results in the preservation of evolutionary 
potential and adaptive capacity. 

In the present study, using complete genome sequencing data, we 
investigated the genetic diversity and population structure of indigenous 

Iranian sheep and several worldwide sheep breeds. Our results from the 
genetic divergence between wild and domestic sheep breeds are in 
accordance with the previous studies that showed significant divergence 
between these two species (Cheng et al., 2023). After domestication in 
the Fertile Crescent, sheep were introduced to other geographical re
gions (Peters et al. 1999; Rowley-Conwy et al. 2016). It has been sug
gested that about 4000 Before the Common Era (BCE), the replacement 
of the initial domesticated sheep population with woolly sheep started in 
Europe (Rowley-Conwy et al. 2016; Mason, 1984). Also, it has been 
proved that about 3000 BCE, fat-tailed and fat-rumped sheep in different 
parts of the central and western Asia and also in East Africa became 
predominant (Ryder, 1964), which may explain the reason for the ge
netic differentiation of European sheep with other studied populations 
in this study (e.g. Asian and African breeds). Furthermore, according to 
earlier research (Ryder, 1983) the majority of the sheep breeds in 

Fig. 2. A) Geographic locations of sheep populations. B) A phylogenetic tree was constructed based on the maximum likelihood (ML) approach. C) The clustering 
analysis based on the ADMIXTURE theory, a distinct number of ancestors (K = 2–6) is assigned to each individual. D) Boxplot of nucleotide diversity (π) for the seven 
sheep populations. E) Principal Component (PC) analysis, PC1 against PC2. 
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Turkey and Southeast Europe are distinct from other European breeds. 
These findings confirmed our results from phylogenetic tree and PCA 
that showed the separation of European individuals’ sheep breeds and 
their affinity to Turkish sheep populations. Collectively, our findings 
from population genetic analysis, including admixture analysis, sug
gested that sheep populations from west Asia, including native sheep 
from Iran, Iraq and Turkey may have been originated from common 
ancestor. 

4.2. Scanning of highly differentiated genomic regions 

Ecological change or human intervention can lead to adaptation in 
an agricultural setting. Natural adaptation in animals is the result of 
various mechanisms (Gaughan et al. 2019). Animal adaptation is 
influenced by physiological, biochemical, immunological, anatomical, 
and behavioral responses (Sejian et al. 2018). Breeding techniques and 
breed type selection can potentially be adaptation strategies because the 
future climate is expected to be hotter with more frequent extreme heat 
(Daghir, 2008; Zumbach et al. 2008). 

Due to the changing global environment, the impact of heat stress is 
particularly important. In livestock species, the impact of heat stress is 
reduced productivity and welfare (Sejian et al. 2018). Immune responses 
that are cell-mediated and humoral might be adversely affected by heat 
stress (Bagath et al. 2019). Thus, hot weather can make animals more 
susceptible to disease and increased the prevalence of certain diseases 
(Chirico et al., (1997); Mashaly et al. 2004; Dahl et al. 2020). Some 
breeds, such as smaller, lighter-colored animals, are less susceptible to 
heat stress (Hoffmann, 2013), compared to dark-colored animals, which 
reflect 50–60 % of the direct sun’s energy (McManus et al. 2009). If 
these characteristics are inherited, selective breeding for heat tolerance 
may be utilized to enhance an animal’s capacity to adapt to environ
mental stress (Hayes et al. 2013; Renaudeau et al. 2012). Indigenous 
sheep breeds that are well adapted to dry and semi-arid regions show 
some specific morphological traits (such as carpet-type wool), which 
may act as a protective barrier against direct sun radiation and allow for 
the efficient cutaneous evaporative dissipation of heat (Mahgoub et al. 
2010). The tail fat deposition is another obvious morphological trait in 
these animals for better heat transfer (Gootwine, 2011). Reduced feed 
intake which helps to decrease heat production in warm environments is 
another well-documented behavioral response to heat stress. According 
to previous studies, sheep and goats naturally consume less feed in the 
summer (Spiers et al. 2004; Shilja et al. 2016). It is also reported that, 
one of the important physiological mechanisms relating to hot adapta
tion is accelerating breath (Naga et al. 2021). Breeds adapted to desert 
areas compensate for the higher water loss during high heat loads by 
condensing the urine (Chedid et al. 2014). For example, Kim et al. 
(2016) identified several candidate regions in Barki Sheep, potentially 

associated with adaptation to hot dry conditions. The majority of the 
identified genes are those involved in multiple signal pathways in a wide 
variety of cellular and biochemical processes, including adaptation to 
the hot, dry environment, thermo-tolerance melanogenesis, body size 
and development, energy and digestive metabolism (Kim et al. 2016). A 
number of genes related to heat stress adaptation and immunity were 
identified by comparing the whole genome data of native sheep pop
ulations from Iran’s hot, dry desert and cold regions. The most signifi
cant of these genes are discussed below. Several candidate genes were 
identified as being involved in the following processes: (1) responding to 
heat stress (SIK2, FER, ATP1A1, CDK5RAP3, and TLR4); (2) immune 
response in hot and dry conditions (CD109, CR2, EOMES, and 
MARCHF1); (3) response to drought stress and adaptation to desert lo
cations (ZFP1, PLCB1, and PDGFD); and (4) response to heat stress via 
regulating digestive metabolism (HTR4, TRHDE, and ALDH1A3). 

4.3. Candidate genes responding to heat stress 

The SIK2 gene (salt inducible kinase 2, Chr. 5 sheep, top 5 % for FST) 
is known to have a significant role in the response to heat stress and has 
been shown to enhance the capacity of Antarctic fish to adapt to rising 
temperatures, according to previous studies (Bilyk et al. 2018). The FER 
(FER tyrosine kinase, Chr. 5 sheep, top 5 % for FST) gene is a cellular 
antioxidant that controls the amount of iron ions available in the Fenton 
reaction to prevent the production of reactive oxygen species (Orino 
et al., 2001). It was reported with increasing the expression of antioxi
dant genes, included FER in the intestine of red swamp crayfish that had 
been exposed to heat stress. This shows that acute heat stress negatively 
affects the immune system and the antioxidant status in the intestine 
(Guo et al. 2020; Guo et al., (2022)). The ATP1A1 (ATPase Na+/K+
transporting subunit alpha 1, Chr. 1, top 1 % for Pi) gene encodes the 
subunit of the Na+ /K+ ATPase enzyme. Heat stress results in oxidative 
stress and has an impact on the plasma’s ATPase enzyme-generated 
alternation of ion gradients, which are suitable candidates for heat 
tolerance characteristics. This gene is significant for the heat tolerance 
coefficient, according to an analysis of the association between the 
ATP1A1 gene and rectal temperature in Jersey cows under heat stress 
(Das et al. 2015). One of the main defense mechanisms in cells is the heat 
shock response. As a new nucleoplasmic shuttle or molecular chaperone, 
the CDK5RAP3 gene (CDK5 regulatory subunit associated with protein 
3, Chr. 11, top 1 % for Pi) regulates the cellular stress response. The 
findings indicate that CDK5RAP3 gene actively contributes to the heat 
stress response and shields cells from heat damage (Shen et al. 2020). On 
sheep’s chromosome 2 there is a known gene (toll-like receptor 4 
(TLR4), top 5 % for FST), which is a member of the Toll-like receptor 
family (TLRs). Toll-like receptors are pattern-recognition cells that 
detect molecular patterns associated with tissue damage and activate 

Fig. 3. Manhattan design of genome-wide Fst levels among the sheep population of cold and hot regions of Iran.  
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signaling cascades to cause inflammatory responses. According to 
analysis of tissue samples from Indian Catla fish that had been subjected 
to thermal stress (Basu et al. 2015), the TLR4 gene is implicated in the 
signaling pathway during thermal stress. 

4.4. Genes related to immune response in hot and dry conditions 

The high-temperature surroundings makes problems for animals’ 
health through the inhibition of the immune system, which results in an 
increased disease incidence. The CD109 gene, is identified in this study, 
belongs to the complement gene family (CD109 molecule, Chr. 8, top 5 
% for FST and top 1 % for Pi). Its differential expression in various 
human carcinomas has been documented (Hashimoto et al. 2004; Zhang 
et al. 2005). Moioli et al. (2015) introduced the CD109 gene as a para
tuberculosis disease resistant gene (Moioli et al., 2015). In addition, the 
CR2 (complement C3d receptor 2, Chr. 12 sheep, top 5 % for FST and top 
1 % for Pi) gene, involved in early complement components for normal 
antibody responses, is mostly expressed on B cells. The findings suggest 
that the immune system utilizes three effective functions mediated by 
CR2 to create optimal antibody responses (Rutemark et al. 2012). 
Another identified gene in this study is the EOMES (eomesodermin, Chr. 
19, top 1 % for Pi). The EOMES is one of the two T-box proteins that are 
expressed in the immune system and has a role in driving the differen
tiation and activity of natural killer (NK) cells. NK cells contribute to the 
primary defense against pathogens and tumors (Zhang et al. 2018). The 
EOMES gene has been discovered in chicken selection signatures from 
arid and tropical environments (Walugembe et al. 2019). Also, the 
MARCHF1 gene, which participates in molecular-cellular signaling and 
transport activities, has been related to the development of thermal 
resistance in a heat-exposed pigs by stimulating the immune system’s 
activity (He et al. 2020). 

4.5. Genes associated with response to drought stress and adaptation to 
desert locations 

Water availability and its utilization in animal production are pre
dicted to decrease as a result of climate change (Field and Barros, 2014; 
Masson-Delmotte et al. 2021). In the coming decades, there will be 
increasing competition among livestock for water, and to address the 
problem of water shortages, more effective production methods are 
needed (Reynolds et al. 2010). In this study, the ZFP1 gene (zinc finger 
protein 1, Chr. 14, top 5 % for FST) was identified as a novel candidate 
gene for drought and water scarcity stresses. According to a study, zinc 
finger domains are crucial for governing processes like cell development 
and programming as well as adaptive responses to environmental stress 
in eukaryotic cells. The results of the study of the genetic diversity of 
cotton plant species have shown that the expression of the ZFP1 gene 
increases under the conditions of drought stress and water scarcity 
(Ciftci-Yilmaz and Mittler, 2008). PLCB1 (phospholipase C beta 1, Chr. 
13, top 5 % for FST), which hydrolyzes phospholipids into fatty acids 
and other lipophilic molecules, is another gene that was founded in this 
investigation. Previous studies show that the PLCB1 gene has undergone 
positive selection in sheep and goats as a result of adaptation to dry 
environments (Kim et al. 2016), as well as in African cattle for heat 
tolerance (Taye et al. 2017). Sheep’s fat tail may be a crucial energy 
source for dealing with upcoming weather changes. The PDGFD (pla
telet-derived growth factor D, Chr. 15, top 1 % for Pi) gene is involved in 
the fat-tailed phenotype through the differentiation of preadipocytes. 
This gene supports the adaptation of Iranian fat-tailed sheep to live in 
the dry, desert environment, as it has been reported as a signature of 
adaptation to desert environments by selective sweeps analyses in Chi
nese sheep (Mastrangelo et al. 2018). 

4.6. Genes associated with response to heat stress via regulating digestive 
metabolism 

Livestock will consume less food and engage in fewer rumination 
activities under heat stress. As a result, less heat is generated by the 
metabolism, and the body temperature will stay constant. In response to 
heat stress, the HTR4, ALDH1A3, and TRHDE genes regulate digestive 
metabolism. Expressed protein with 5-Hydroxytryptamine receptor 4 
(HTR4, Chr. 5 sheep, top 1 % of Pi) gene has important regulatory effects 
on digestive sensitivity and food intake. Through a transcriptome 
investigation of liver tissue in sheep, Lu et al. (2019) demonstrated that 
heat stress dramatically elevated the expression of the HTR4 gene (Lu 
et al. 2019). The TRHDE (thyrotropin-releasing hormone degrading 
enzyme, Chr. 3 sheep, top 5 % of FST) gene encodes an extracellular 
peptidase that cleaves and inactivates thyrotropin-releasing hormone, 
thereby reducing appetite and metabolism. Thyrotropin-releasing hor
mone plays a key role in controlling metabolism and appetite (Friedman 
et al. 1995). The aldehyde dehydrogenase enzyme is encoded by the 
ALDH1A3 (aldehyde dehydrogenase 1 family member A3, Chr. 18, top 1 
% of Pi) gene. Studies on Barki sheep in the Egyptian desert have shown 
that the ALDH1A3 and TRHDE genes indirectly influence the adapt
ability to hot and dry conditions through the energy metabolism and 
digestive system (Kim et al. 2016). 

5. Conclusions 

This work is the first attempt to identify candidate genes relevant to 
adaptation to Iran’s predominant climate (hot and desert) using whole- 
genome sequencing data from a significant number of native Iranian 
breeds (ten different breeds), and it also examined the population 
structure of native Iranian sheep breeds in comparison to various breeds 
from Europe, Asia, and Africa. The SIK2, FER, CDK5RAP3, TLR4, and 
ZFP1 genes were discovered novel candidate genes involved in heat 
stress adaptation and more research are needed to determine their 
phenotype-genotype relationships. Our findings may advance our 
knowledge of desert adaptation mechanisms and can also help with 
focused selection. A caveat of our study is that although a group of genes 
related to climate changes were identified, the relationship of the ge
notype and phenotype still needs additional functional evidence. Whole- 
genome sequences from multiple individuals from different native 
breeds would be necessary for validating the potential selective genomic 
regions, which should also lead to the determination of additional 
important mutations responsible for the adaptation to climate seen in 
the native Iranian sheep breeds. 
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